If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+75x+12=0
a = 16; b = 75; c = +12;
Δ = b2-4ac
Δ = 752-4·16·12
Δ = 4857
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(75)-\sqrt{4857}}{2*16}=\frac{-75-\sqrt{4857}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(75)+\sqrt{4857}}{2*16}=\frac{-75+\sqrt{4857}}{32} $
| 4(2y−3)−2y=24 | | 142=7x-4 | | 3=k−63 | | k/4=-8 | | 1=w2− 2 | | 9(x+4)+8=9x+9 | | 8+6x=8× | | 7x+25=5x+41 | | 6(9+5x)+54= | | 7(z+2)-3z=44. | | (x-1.5)^1.05=13.271 | | -7x+3=3x+123 | | 3(4)x=96 | | 9+6x=3x+39 | | -1x+3=-42+4x | | -7x2+12,25x+1,75=0 | | -3(2n-7)4n=15 | | 9(x+4)+8=9x9 | | -1t+14=3t+10 | | k=1+3.320 | | 4x+28=13x5. | | 4p-6+2p+2=10-p | | 0.2(15−5t)=30t−15 | | 2/3(6a+9)=16.2 | | −9w=76.5−9w=76.5 | | 5+j=8.2 | | -6j=19.2 | | 8(3x-3)=24 | | -0.1³+0.6x²+85=70 | | –4(–4w–18)–10w=12 | | X.x=14 | | 3|8=-1/4a |